Резервный химический источник тока - определение. Что такое Резервный химический источник тока
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Резервный химический источник тока - определение

Резервный арбитр; Резервный судья
Найдено результатов: 333
Резервный химический источник тока      

первичный химический источник тока, конструкция которого позволяет сохранять его в неактивном (нерабочем) состоянии достаточно долгое время и переводить в нужный момент в активное состояние путём осуществления контакта электродов с электролитом или перевода электролита в рабочее состояние. Сохранность современных Р. х. и. т. (10-15 лет) значительно превышает сроки хранения химических источников тока обычной конструкции. См. также Источники тока, Магниевый элемент, Расплавные источники тока.

Источник тока         
  • Рисунок 3. Обозначения источника тока на схемах
  • биполярных транзисторах]]
Исто́чник то́ка (в теории электрических цепей) — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока.
Химический источник тока         
  • 300x300пкс
КЛАСС ИСТОЧНИКОВ ЭЛЕКТРОПИТАНИЯ
Химические источники тока
Хими́ческий исто́чник то́ка (аббр. ХИТ) — источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию.
Химические источники тока         
  • 300x300пкс
КЛАСС ИСТОЧНИКОВ ЭЛЕКТРОПИТАНИЯ
Химические источники тока

устройства, вырабатывающие электрическую энергию за счёт прямого преобразования химической энергии окислительно-восстановительных реакций. Первые Х. и. т. созданы в 19 в. (Вольтов столб, 1800; элемент Даниела - Якоби, 1836; Лекланше элемент, 1865, и др.). До 60-х гг. 19 в. Х. и. т. были единственными источниками электроэнергии для питания электрических приборов и для лабораторных исследований. Основу Х. и. т. составляют два электрода (один - содержащий окислитель, другой - восстановитель), контактирующие с электролитом. Между электродами устанавливается разность потенциалов - Электродвижущая сила (эдс), соответствующая свободной энергии окислительно-восстановительной реакции. Действие Х. и. т. основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на отрицательном электроде восстановитель окисляется, образующиеся свободные электроны переходят по внешней цепи (создавая разрядный ток) к положительному электроду, где участвуют в реакции восстановления окислителя.

В зависимости от эксплуатационных особенностей и от электрохимической системы (совокупности реагентов и электролита) Х. и. т. делятся на гальванические элементы (обычно называются просто элементами), которые, как правило, после израсходования реагентов (после разрядки) становятся неработоспособными, и Аккумуляторы, в которых реагенты регенерируются при зарядке - пропускании тока от внешнего источника (см. Зарядное устройство). Такое деление условно, т.к. некоторые элементы могут быть частично заряжены. К важным и перспективным Х. и. т. относятся топливные элементы (См. Топливный элемент) (электрохимические генераторы (См. Электрохимический генератор)), способные длительно непрерывно работать за счёт постоянного подвода к электродам новых порций реагентов и отвода продуктов реакции. Конструкция резервных химических источников тока (См. Резервный химический источник тока) позволяет сохранять их в неактивном состоянии 10-15 лет (см. также Источники тока).

С начала 20 в. производство Х. и. т. непрерывно расширяется в связи с развитием автомобильного транспорта, электротехники, растущим использованием радиоэлектронной и др. аппаратуры с автономным питанием. Промышленность выпускает Х. и. т., в которых преимущественно используются окислители PbO2, NiOOH, MnO2 и др., восстановителями служат Pb, Cd. Zn и др. металлы, а электролитами - водные растворы щелочей, кислот или солей (см., например, Свинцовый аккумулятор).

Основные характеристики ряда Х. и. т. приведены в табл. Лучшие характеристики имеют разрабатываемые Х. и. т. на основе более активных электрохимических систем. Так, в неводных электролитах (органических растворителях, расплавах солей или твёрдых соединениях с ионной проводимостью) в качестве восстановителей можно применять щелочные металлы (см. также Расплавные источники тока). Топливные элементы позволяют использовать энергоёмкие жидкие или газообразные реагенты.

Лит.: Дасоян М. А., Химические источники тока, 2 изд., Л., 1969: Романов В. В., Хашев Ю. М., Химические источники тока, М., 1968; Орлов В. А., Малогабаритные источники тока, 2 изд., М., 1970; Вайнел Д. В., Аккумуляторные батареи, пер. с англ., 4 изд., М. - Л., 1960; The Primary Battery, ed. G. W. Heise, N. C. Cahoon, v. 1, N. Y. - L., 1971.

В. С. Багоцкий.

Характеристики химических источников тока

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Тип источника | Состоя- | Электрохи- | Разряд- | Удельная | Удельная мощность, | Другие |

| тока | ние разра- | мическая | ное напря- | энергия, | вт/кг | показатели |

| | ботки* | система | жение, в | вт·ч/кг |---------------------------------------| |

| | | | | | Номи- | Макси- | |

| | | | | | нальная | мальная | |

| | | | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Гальванические элементы | Сохранность, |

| | годы |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Марганцевые | А | (+) MnO2 | NH4 | 1,5-1,0 | 20-60 | 2-5 | 20 | 1-3 |

| солевые | | Cl, ZnCl2 | | | | | |

| | | | Zn(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Марганцевые | А | (+)MnO2| KOH | 1,5-1,1 | 60-90 | 5 | 20 | 1-3 |

| щелочные | | | Nn(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ртутно-цинковые | А | (+)HgO | KOH | 1,3-1,1 | 110-120 | 2-5 | 10 | 3-5 |

| | | | Zn | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Литиевые | Б | (+) (C) | SOCl2, | 3,2-2,6 | 300-450 | 10-20 | 50 | 1-5 |

| неводные | | LiAlCl4 | Li(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Аккумуляторы | Срок службы, |

| | циклы |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Свинцовые | А | (+)PbO2 | | 2,0-1,8 | 25-40 | 4 | 100 | 300 |

| кислотные | | H2SO4 | Pb(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Кадмиево- и | А | (+)NiOOH | | 1,3-1,0 | 25-35 | 4 | 100 | 2000 |

| железо- | | KOH | Cd, | | | | | |

| никелевые | | Fe(-) | | | | | |

| щелочные | | | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Серебряно- | А | (+)Ag2O AgO | | 1,7-1,4 | 100-120 | 10-30 | 600 | 100 |

| цинковые | | KOH | Zn(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Никель- | Б | (+)NiOOH | | 1,6-1,4 | 60 | 5-10 | 200 | 100-300 |

| цинковые | | KOH | Zn(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Никель- | Б | (+)NiOOH | | 1,3-1,1 | 60 | 10 | 40 | 1000 |

| водородные | | KOH | | | | | | |

| | | H2(Ni) (-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Цинк-воздушные | В | (+)O2(C) | | 1,2-1,0 | 100 | 5 | 20 | (100) |

| | | KOH | Zn(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Серно- | В | (+)SnaO• | 2,0-1,8 | 200 | 50 | 200 | (1000) |

| натриевые | | 9Al2O3| Na(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Топливные элементы | Ресурс |

| | работы, ч |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Водородно- | Б | (+)O2(C,Ag) | | 0,9-0,8 | - | - | 30-60 | 1000-5000 |

| кислородные | | KOH | | | | | | |

| | | H2(Ni)(-) | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Гидразино- | Б | (+)O2(C,Ag) | | 0,9-0,8 | - | - | 30-60 | 1000-2000 |

| кислородные | | KOH | N2H4(Ni)(- | | | | | |

| | | ) | | | | | |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* A - серийное производство, Б - опытное производство, В - в стадии разработки (характеристики ожидаемые).

Примечание. Характеристики (особенно удельная мощность) ориентировочные, так как данные разных фирм и разных авторов не совпадают.

ИСТОЧНИКИ ТОКА         
  • Рисунок 3. Обозначения источника тока на схемах
  • биполярных транзисторах]]
устройства, преобразующие различные виды энергии в электрическую. Условно различают химические источники тока, в которых электроэнергия вырабатывается в результате окислительно-восстановительной реакции (гальванические элементы), и физические источники тока, преобразующие тепловую, механическую, электромагнитную, а также энергию радиационного излучения и ядерного распада в электрическую (электромагнитные генераторы, термоэлектрические генераторы, солнечные и ядерные батареи и др.). Химические источники тока делятся на первичные (гальванические элементы и батареи из них), вторичные (электрические аккумуляторы и аккумуляторные батареи) и топливные элементы.
Источники тока         
  • Рисунок 3. Обозначения источника тока на схемах
  • биполярных транзисторах]]

устройства, преобразующие различные виды энергии в электрическую. По виду преобразуемой энергии И. т. условно можно разделить на химические и физические. Сведения о первых химических И. т. (гальванических элементах и аккумуляторах) относятся к 19 в. (например, батарея Вольта, элемент Лекланше). Однако вплоть до 40-х гг. 20 в. в мире было разработано и реализовано в конструкциях не более 5 типов гальванических пар. С середины 40-х гг. вследствие развития радиоэлектроники (См. Радиоэлектроника) и широкого использования автономных И. т. создано ещё около 25 типов гальванических пар. Теоретически в И. т. может быть реализована свободная энергия химических реакции практически любого окислителя и восстановителя, а следовательно, возможна реализация несколько тысяч гальванических пар. Принципы работы большинства физических И. т. были известны уже в 19 в. В дальнейшем вследствие быстрого развития и совершенствования Турбогенераторы и Гидрогенераторы стали основными промышленными источниками электроэнергии. Физические И. т., основанные на других принципах, получили промышленное развитие лишь в 50-60-х гг. 20 в., что обусловлено возросшими и достаточно специфическими требованиями современной техники. В 60-х гг. технически развитые страны уже имели промышленные образцы термогенераторов, термоэмиссионных генераторов (СССР, ФРГ, США), атомных батарей (Франция, США, СССР).

Технический прогресс, проникновение электротехники и электроники на транспорт, в быт, медицину и т. д. стимулировали разработку автономных источников электропитания, среди которых химические И. т. в количественном отношении заняли видное место, став продукцией массового потребления. Переносные осветительные приборы, магнитофоны и радиоприёмники, телевизоры и переносная медицинская аппаратура, средства ж.-д. транспорта, автомобили, тракторы, самолёты, искусственные спутники, космические корабли, средства связи и многое другое оснащены малогабаритными И. т.

Теория И. т. предусматривает исследование всех стадий процесса генерирования электрического тока на основе современных представлений о физике твёрдого тела, жидкости и газа, о процессах переноса зарядов и электрохимических реакциях. Теория И. т. изучает также вопросы оптимизации, включающие как выбор исходных параметров, обеспечивающих оптимальные выходные характеристики И. т., так и разработку методов прогнозирования характеристик будущих И. т. К важнейшим характеристикам И. т. относятся: кпд, энергоёмкость (или удельная энергоёмкость), мощность (или удельная мощность, отнесённая к единице массы, объёма и т. д.), срок службы, качество генерируемой электроэнергии (частота, напряжение, способность к перегрузкам, стоимость, надёжность).

Химическими источниками тока принято называть устройства, вырабатывающие электрический ток за счёт энергии окислительно-восстановительных реакций химических реагентов. В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую сеть химические И. т. подразделяются на первичные, вторичные и резервные, а также электрохимические генераторы. Первичные И. т. (гальванические элементы и батареи) допускают, как правило, однократное использование энергии химических реагентов. Отдельные конструкции гальванических элементов и батарей разрешают кратковременное повторное использование энергии реагентов после электрической подзарядки. Положительный (катод) и отрицательный (анод) электроды, разделённые электролитом в жидком или пастообразном состоянии или же пористой мембраной-сепаратором с поглощённым в ней электролитом, электрически связаны (гальваническая связь) в течение всего срока службы И. т.

Вторичные И. т. (отдельные Аккумуляторы и аккумуляторные батареи) допускают многократное (сотни и тысячи заряд-разрядных циклов) использование энергии составляющих химических реагентов. Электроды и электролит весь срок службы аккумуляторов находятся в электрическом контакте друг с другом. Для увеличения ресурса аккумуляторов в некоторых специфических условиях эксплуатации разработаны способы сухозаряженного хранения аккумуляторов. Такие аккумуляторы перед включением предварительно заливают электролитом.

Резервные И. т. допускают только однократное использование энергии химических реагентов. В отличие от гальванических элементов и аккумуляторов, в резервных И. т. электролит при хранении никогда гальванически не связан с электродами. Он хранится в жидком состоянии (в стеклянных, пластмассовых или металлических ампулах) либо в твёрдом (но неэлектропроводном) состоянии в межэлектродных зазорах. При подготовке к работе резервных И. т. ампулы разрушают сжатым воздухом, взрывом, а кристаллы твёрдого электролита расплавляют с помощью электрического или пиротехнического разогрева. Резервные И. т. применяют для питания электрической аппаратуры, которая долгое время может (вынуждена) находиться в резервном (неработающем) состоянии. Срок хранения современных резервных И. т. превышает 10-15 лет.

Электрохимические генераторы (топливные элементы (См. Топливный элемент)) представляют собой разновидность химических И. т. Электрохимические генераторы способны длительное время непрерывно генерировать электрический ток в результате преобразования энергии химических реагентов (газообразных или жидких), поступающих в генератор извне.

К 1970 в США и СССР были созданы промышленные образцы электрохимических генераторов. Ведутся интенсивные работы по созданию электрохимических генераторов для космических объектов, электромобилей, стационарных установок и т. д. Разрабатываются разновидности электрохимических генераторов (высоко-, средне- и низкотемпературные, на газообразных, жидких и твёрдых реагентах и т. д.), из которых наиболее перспективны генераторы, непосредственно преобразующие энергию природного топлива в электрическую. (Подробнее о химических И. т. см. в ст. Химические источники тока.)

Физическими источниками тока называют устройства, преобразующие тепловую, механическую, электромагнитную энергию, а также энергию радиационного излучения и ядерного распада в электрическую. В соответствии с наиболее часто употребляемой классификацией к физическим И. т. относят: электромашинные генераторы, термоэлектрические генераторы, термоэмиссионные преобразователи, МГД-генераторы, а также генераторы, преобразующие энергию солнечного излучения и атомного распада.

Электромашинные генераторы, преобразующие механическую энергию в электрическую, - наиболее распространённый вид источников электрической энергии, основа современной энергетики. Они могут быть классифицированы по мощности (от долей вт до сотен Мвт), по назначению и особенностям эксплуатации (стационарные, транспортные, резервные и т. д.), по роду первичного двигателя (дизель-генераторы, турбо- и гидрогенераторы), по рабочему телу (пар, вода, газ) и т. д. Благодаря длительному периоду теоретического, конструктивного и технологического совершенствования характеристики этого типа И. т. достигли значений, близких к предельным (см. Генератор электромашинный).

Работа термоэлектрического генератора (ТЭГ) основана на использовании Зеебека эффекта. Рабочим материалом в ТЭГ служат различные полупроводниковые соединения кремния, германия и т. п. (как правило, твёрдые растворы). Кпд ТЭГ от 3 до 15\% в диапазоне температур от 100 до 1000°C. Исследования ТЭГ ведутся в СССР, США, Франции и др. Области возможного применения ТЭГ: автономные источники питания (на транспорте, в технике связи, медицине), антикоррозионная защита (на магистральных трубопроводах) и др. (см. Термоэлектрический генератор).

Принцип работы термоэмиссионного преобразователя (ТЭП) основан на использовании термоэмиссионного эффекта (испускание электронов поверхностью нагретого металла). Термоэмиссионный поток электронов зависит главным образом от температуры и свойств поверхности материала. Кпд отдельных лабораторных образцов ТЭП достигает 30\%, а действующих энергетических установок 15\% (при электрической мощности, снимаемой с единицы поверхности катода, - 30 вт/см2). Наиболее перспективно применение ТЭП в качестве автономных источников электроэнергии большой мощности (до 100 квт). Работы по ТЭП ведутся в СССР, США, ФРГ, Франции и др. (см. Термоэмиссионный преобразователь энергии).

Принцип действия И. т., преобразующих энергию солнечного излучения, основан на использовании внутреннего фотоэффекта (см. Фотоэлектрические явления). Фотоэлектрический генератор (Солнечная батарея) представляет собой совокупность вентильных фотоэлементов, преобразующих энергию солнечного излучения в электрическую. Практически прямое преобразование энергии солнечного излучения стало возможно лишь после создания в 1953 высокоэффективного фотоэлемента из монокристаллического кремния. Лучшие образцы кремниевых фотоэлементов имеют кпд около 15\%; срок службы их практически неограничен. Солнечные батареи применяются главным образом в космической технике, где они занимают доминирующее положение как источники энергии на искусственных спутниках Земли, орбитальных станциях и космических кораблях, а также для снабжения электроэнергией удалённых от линии электропередачи районов с большим числом солнечных дней в году, например в Туркменской ССР, Индии, Пакистане (см. Гелиотехника).

И. т., преобразующие энергию атомного распада (атомные батареи), используют кинетическую энергию электронов, образующихся при β-распаде. Эти И. т. находились к 1971 в стадии разработки, и их практическое использование требует решения многих конструкторских и технологических задач. Кпд атомных батарей невысок (до 1\%), а область применения может быть определена лишь после накопления достаточного опыта их использования.

Лит. см. при статьях с описанием конкретных типов источников тока.

Н. С. Лидоренко.

Резервный фонд Российской Федерации         
  • Резервный фонд России, динамика изменений 2008—2017
Резе́рвный фонд Росси́йской Федера́ции сформирован 1 февраля 2008 года, после разделения Стабилизационного фонда на Резервный фонд и Фонд национального благосостояния России (ФНБ). С 1 января 2018 года Резервный фонд ликвидирован и присоединен к Фонду национального благосостоянияВ России перестал существовать Резервный фонд // КоммерсантъРезервный фонд России прекратил существование // РИА Новости, 1 янв 2018.
Источник ЭДС         
  • Рисунок 4. Обозначения источника напряжения на схемах
Исто́чник ЭДС (идеа́льный источник напряже́ния) — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия. В простейшем случае ЭДС определена как константа, обычно обозначаемая буквой \mathcal{E}.
Термальные воды         
  • Самый крупный горячий источник Европы [[Дейльдартунгюквер]] ([[Исландия]]) выносит 180 литров воды в секунду при температуре +97 °C.
  • Нагано]], Япония).
  • Камчатке]]
(франц. thermal - тёплый, от греч. thérme - тепло, жар)

подземные воды земной коры с температурой от 20 °С и выше. Глубина залегания изотермы 20 °С в земной коре от 1500-2000 м в районах многолетнемёрзлых пород до 100 м и менее в районах субтропиков; на границе с тропиками изотерма 20 °С выходит на поверхность. В артезианских бассейнах на глубине 2000- 3000 м скважинами вскрываются воды с температурой 70-100 °С и более. В горных странах (например, Альпы, Кавказ, Тянь-Шань, Памир) Т. в. выходят на поверхность в виде многочисленных горячих источников (температура до 50-90 °С), а в районах современного вулканизма проявляют себя в виде гейзеров (См. Гейзеры) и паровых струй (здесь скважинами на глубине 500-1000 м вскрываются воды с температурой 150-250 °С), дающих при выходе на поверхность пароводяные смеси и пары (Паужетка на Камчатке, Большие Гейзеры в США, Уайракей в Новая Зеландии, Лардерелло в Италии, гейзеры в Исландии и др.).

Химический, газовый состав и минерализация Т. в. разнообразны: от пресных и солоноватых гидрокарбонатных и гидрокарбонатно-сульфатных, кальциевых, натриевых, азотных, углекислых и сероводородных до солёных и рассольных хлоридных, натриевых и кальциево-натриевых, азотно-метановых и метановых, местами сероводородных (см. Минеральные воды).

Издавна Т. в. находили применение в лечебных целях (римские, тбилисские Термы). В СССР пресные азотные термы, богатые кремнекислотой, используют известные курорты - Белокуриха на Алтае, Кульдур в Хабаровском крае и др.; углекислые Т. в.- курорты Кавказских Минеральных Вод (Пятигорск, Железноводск, Ессентуки), сероводородные - курорт Сочи-Мацеста (см. Сочи). В бальнеологии Т. в. подразделяют на тёплые (субтермальные) 20-37 °С, термальные 37-42 °С и гипертермальные св. 42 °С.

В районах современного и недавнего вулканизма в Италии, Исландии, Мексике, СССР, США, Японии работает ряд электростанций, использующих перегретые Т. в. с температурой свыше 100 °С. В СССР и др. странах (Болгария, Венгрия, Исландия, Новая Зеландия, США) Т. в. применяют также для теплоснабжения жилых и производств. зданий, обогрева теплично-парниковых комбинатов, плавательных бассейнов и в технологических целях (Рейкьявик полностью обогревается теплом Т. в.). В СССР организовано теплоснабжение микрорайонов гг. Кизляра, Махачкалы, Зугдиди, Тбилиси, Черкесска; обогреваются теплично-парниковые комбинаты на Камчатке, Кавказе. В теплоснабжении Т. в. делятся на слаботермальные 20-50 °С, термальные 50-75 °С. высокотермальные 75-100 °С.

Лит.: Изучение и использование глубинного тепла Земли, М., 1973; Маврицкий Б. Ф., Термальные воды складчатых и платформенных областей СССР, М., 1971.

Б. Ф. Маврицкий.

Исторические источники         
  • культуры шнуровой керамики]]
  • Истории]]» [[Геродот]]а
  • древнегреческого шлема]]
  • Екатеринослава]], XIX век
Истори́ческие исто́чники — весь комплекс документов и предметов материальной культуры, непосредственно отразивших исторический процесс и запечатлевших отдельные факты и свершившиеся события, на основании которых воссоздаётся представление о той или иной исторической эпохе, выдвигаются гипотезы о причинах или последствиях, повлёкших за собой те или иные исторические событияИванов Г. М. Исторический источник и историческое познание. — Томск: Изд-во ТГУ, 1973..

Википедия

Резервный судья (футбол)

Резервный судья — участник футбольного матча, который может назначаться на матч для выполнения специальных обязанностей, предусмотренных Правилами игры в футбол.

Что такое Рез<font color="red">е</font>рвный хим<font color="red">и</font>ческий ист<font color="red